Hall Ticket Number:	Ha	all	Tic	ket	Num	ber:
---------------------	----	-----	-----	-----	-----	------

a contraction of the second	and the second s				
1 1			1 1	1 1	
		4 1	1 1	1 1	
1 1		1 1	1 1	1 1	1 1
		1 1	1 1	1 1	1 1.
1 1	1	2 9	1 1	1 1	

Max. Marks: 70

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (EEE: CBCS) I-Semester Main Examinations, Jan./Feb.-2017

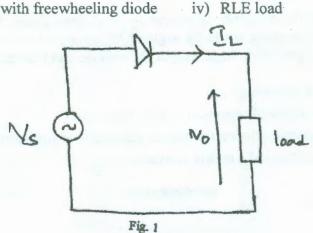
(Power Systems & Power Electronics)

Power Electronic Converters

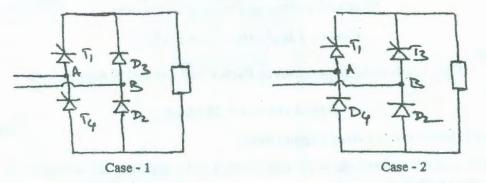
Time: 3 hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$


- 1. Explain the functions of a freewheeling diode.
- 2. Explain the current and voltage wave forms obtained by applying DC voltage to an RL circuit in series with a diode.
- 3. Draw the circuit diagram of a single phase bridge rectifier and draw the load voltage and current waveforms.
- 4. Draw the circuit diagram of single phase half-wave controlled rectifier with R-L load and obtain the expression for average load voltage.
- 5. Explain the principles of step down operation in a DC-DC converter.
- 6. Draw and illustrate mode 1 and mode 2 operation of a boost converter of continuous conduction with suitable waveforms.
- 7. Explain the principle of sinusoidal pulse width modulation.
- 8. Explain various methods of voltage control in a single phase inverter.
- 9. Summarize the principle of operation of a voltage regulator with a real time application.
- 10. Explain the principle of AC voltage controller using PWM.

Part-B $(5 \times 10 = 50 Marks)$ (All bits carry equal marks)


- 11. a) Derive an expression for current in a circuit with series R, L components in series with a diode when the switch is closed at t = 0.
 - b) Analyze the operation of a half bridge circuit shown in fig.1 and draw the load voltage and current waveforms for the following cases.
 - i) Resistive load

ii) inductive load

iii) RL load with freewheeling diode

12. a) Two half controlled bridge rectifier circuits are shown in case 1 & case 2, compare and analyze the principle of operation of these circuits with suitable waveforms and also illustrate the advantages and disadvantages of each rectifier.

- b) For the above circuits shown in case 1 & case 2, obtain the expressions for load voltage, current and power factor of the converter.
- 13. a) Explain with a circuit diagram the operation of a step up converter with R load and derive an expression for current in the inductor (i) when the switch is closed and (ii) when the switch is open.
 - b) In a step up converter input DC voltage is 10 V, switching frequency is 1 kHz, load resistor is 5 ohms, inductor is 6.5 mH, duty cycle is 50 %. Find the current in the inductor (i) when the switch is closed and (ii) when the switch is open.
- 14. a) Draw the circuit diagram of single phase bridge inverter and explain its principle and define various performance parameters.
 - b) A single phase half bridge inverter has a resistive load R = 2.4 ohms and the DC input voltage is 48 V. Determine the fundamental RMS output voltage, output power, average and peak currents of the mosfets, and the total harmonic distortion.
- 15. a) Draw the circuit diagram of a phase controlled single phase bidirectional AC voltage regulator and derive expression for output voltage.
 - b) Draw and analyze the principle of operation of a three phase AC voltage regulator feeding a star connected load with waveforms showing firing pulses, phase voltages and phase currents.
- 16. a) For a DC supply charging RL circuit through a diode, derive the expression and show the waveforms of the charging current load voltage.
 - b) Draw and explain the principle of operation of a three phase fully controlled bridge converter (rectifier) working at a firing angle of 30° and operating with R-L load, also draw the waveforms of input AC voltage, output DC voltage and load current.
- 17. Answer any two of the following:
 - a) Explain the principle of operation of a Cuk converter.
 - b) Describe various modulation techniques applicable to inverters.
 - c) Describe the function of a matrix converter.

ଏସ ଏସ ଏସ ୧୬ ଅର ଅର